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DECISION TREE 

A Decision Tree in machine learning is a popular and intuitive model used for both classification and 

regression tasks. 

 It resembles a flowchart-like structure where decisions are made based on feature values.  

The goal is to split the dataset into smaller subsets that make it easier to predict the target variable. 

Components of a Decision Tree: 

1. Root Node: This is the topmost node that represents the entire dataset. It is split based on a 

feature that best separates the data. 

2. Decision Nodes: These are the internal nodes where the data is split further based on different 

features. 

3. Leaf Nodes: These represent the final classification or output. No further splitting occurs at 

this point. 

Example: Decision Tree for Classifying Pass/Fail Based on Study Hours 

Imagine we have a simple dataset with two features: hours studied and whether the student has 

passed or failed an exam. 

 

 

We want to build a decision tree that can predict whether a student will pass or fail based on the hours 

studied. 

1. Root Node: 

The decision tree will start by choosing the best feature to split the data. Here, "Hours Studied" is the 

feature. 

2. Splitting: 

Based on the hours studied, the decision tree splits the data at a certain threshold. Let’s say it finds 

that the best split is at 3.5 hours. 

• If Hours Studied ≤ 3.5, then it predicts Fail. 

• If Hours Studied > 3.5, then it predicts Pass. 
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3. Tree Representation: 

Here is how the decision tree would look: 

 

 If a student studied 2 hours, the tree checks whether 2 is less than or equal to 3.5. Since the answer 

is "Yes," it predicts "Fail." 

 If a student studied 5 hours, the tree checks whether 5 is greater than 3.5. Since the answer is "Yes," 

it predicts "Pass." 

Key Points: 

• Feature Selection: Decision trees select features to split the data based on measures like Gini 

Impurity or Information Gain (derived from entropy), which help determine which split 

improves classification the most. 

• Interpretability: Decision trees are easy to interpret and visualize, making them a great tool 

for explaining model decisions. 

• Overfitting: A common challenge with decision trees is overfitting, where the tree becomes 

too complex and captures noise in the data. Techniques like pruning are used to limit the tree’s 

depth. 

Conclusion: 

A decision tree simplifies complex decision-making by breaking it down into a series of simpler 

questions. It’s a powerful tool in machine learning, especially when interpretability is important. 

 

DECISION TREE CLASSIFIER PROGRAM 

Evaluate a Decision Tree Classifier model using the famous Iris dataset, which contains information 

about different iris flower species. 

Here’s an overview of what each part of the program does: 

1. Importing Necessary Libraries 

• pandas, numpy: For data manipulation and numerical operations. 

• matplotlib.pyplot, seaborn: For data visualization. 

• sklearn.preprocessing.LabelEncoder: For encoding categorical labels into numeric form. 

• sklearn.model_selection.train_test_split: To split the data into training and testing sets. 

• sklearn.tree.DecisionTreeClassifier: The machine learning model used for classification. 

• sklearn.metrics.classification_report, confusion_matrix: To evaluate the model’s 

performance. 
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• sklearn.tree.plot_tree: To visualize the decision tree. 

 

2. Loading and Exploring the Iris Dataset 

 

• The Iris dataset is loaded using seaborn's built-in dataset. It contains 150 samples of iris flowers 

categorized into three species (setosa, versicolor, virginica), along with 4 attributes (sepal 

length, sepal width, petal length, and petal width). 

 

• The dataset is saved as a CSV file (iris.csv), and the head, info, shape, and missing values are 

checked. 

3. Data Visualization 

• Pair Plot: Visualizes relationships between different features. 

  

 

• Heatmap: Visualizes the correlation matrix between numerical features. 

 

 

4. Preparing Data for Model 

• Target: The species column is separated as the target variable. 
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• Features: The dataset (minus the target column) is prepared as features. 

 

• Label Encoding: Converts the target labels (species names) into numeric form. 

  

 

5. Train-Test Split 

• The dataset is split into training and testing sets in an 80:20 ratio. 

X_train, X_test, y_train, y_test = train_test_split(X , y, test_size = 0.2, random_state = 42) 

 

6. Training the Decision Tree Classifier 

• A decision tree classifier is created and trained using the training data. 

  

 

7. Evaluating the Model 

• Classification Report: Prints precision, recall, f1-score, and accuracy for each class. 

  

 

• Confusion Matrix: Displays the confusion matrix to visualize the model's performance. 
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8. Visualizing the Decision Tree 

• The decision tree is plotted using plot_tree(). 

 

 

Conclusion 

This program successfully builds a decision tree model to classify iris species based on petal and sepal 

measurements. It also evaluates the model’s accuracy and visualizes both the relationships between 

features and the structure of the decision tree. 

 


